## Exercise 85

Find the dimensions of the rectangular corral producing the greatest enclosed area given 200 feet of fencing.

## Solution

Draw a schematic of the rectangular corral, labelling the length and width as $L$ and $W$, respectively.


The perimeter is the sum of the rectangle's sides.

$$
\begin{aligned}
P & =L+L+W+W \\
& =2 L+2 W
\end{aligned}
$$

It's given to be 200 feet.

$$
200=2 L+2 W
$$

Solve for $L$.

$$
\begin{gathered}
200-2 W=2 L \\
\frac{1}{2}(200-2 W)=L \\
L=100-W
\end{gathered}
$$

Write the formula for the area, substitute the result for the length, and complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
A & =L W \\
& =(100-W) W \\
& =100 W-W^{2} \\
& =-\left(W^{2}-100 W\right) \\
& =-\left[\left(W^{2}-100 W+50^{2}\right)-50^{2}\right] \\
& =-\left[(W-50)^{2}-50^{2}\right] \\
& =-(W-50)^{2}+50^{2}
\end{aligned}
$$

Therefore, the maximum area is $A=50^{2}=2500 \mathrm{ft}^{2}$, which occurs when $W=50 \mathrm{ft}$ and $L=100-50=50 \mathrm{ft}$.

